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Averaged equations governing the motion of equal rigid spheres suspended in a 
potential flow are derived from the equation for the probability distribution. A 
distinctive feature of this work is the derivation of the disperse-phase momentum 
equation by averaging the particle equation of motion directly, rather than the 
microscopic equation for the particle material. This approach is more flexible than the 
usual one and leads to a simpler and more fundamental description of the particle 
phase. The model is closed in a systematic way (i.e. with no ad hoc assumptions) in the 
dilute limit and in the linear limit. One of the closure quantities is related to the 
difference between the gradient of the average pressure and the average pressure 
gradient, a well-known problem in the widely used two-fluid engineering models. The 
present result for this quantity leads to the introduction of a modified added mass 
coefficient (related to Wallis’s ‘ exertia ’) that remains very nearly constant with changes 
in the volume fraction and densities of the phases. Statistics of this coefficient are 
provided and exhibit a rather strong variability of up to 20% among different 
numerical simulations. A detailed comparison of the present results with those of other 
investigators is given in 9 10. 

As a further illustration of the flexibility of the techniques developed in the paper, 
in Appendix C they are applied to the calculation of the so-called ‘particle stress’ 
tensor. This derivation is considerably simpler than others available in the literature. 

1. Introduction 
This paper presents a method for the derivation of averaged equations for disperse 

two-phase systems. The method is systematic (meaning that no ad hoc closure relations 
are required, at least at the lowest non-trivial order) and general, in that it may be 
applied to a variety of thermo-fluid and solid mechanics situations. Here it is 
implemented for the case of rigid spheres suspended in a potential flow. In a related 
paper (Zhang & Prosperetti 1994), the case of spheres with a variable radius is studied 
and a summary of other applications to heat conduction and convection, Stokes flow, 
and thermocapillary processes is given in Zhang (1993) and Prosperetti & Zhang 
(1993). Our results shed light on many others available in the literature and achieve 
some unification. A detailed discussion and comparison with the work of Biesheuvel, 
Drew, Lahey, Wallis, Sangani, and others is given in 9 10. 

Although our point of departure is the equation satisfied by the particle distribution 
function (Biesheuvel & Spoelstra 1989; Biesheuvel & Gorissen 1990; Koch 1990; 
Sangani & Didwania 1993a), we use ensemble averaging over the individual phases 

t With Appendix C by H. F. Bulthuis. 
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rather than over the entire mixture as is more customary (see e.g. Batchelor 1970, 1972, 
1974). For the disperse phase we average the particle momentum equation directly, 
rather than the momentum equation for the particle material as done by others (see e.g. 
Hinch 1977). This procedure offers several advantages as discussed in $3. In particular, 
the disperse-phase momentum equation found in this way involves the gradient of the 
continuous rather than the disperse-phase pressure. Our results are couched in the 
framework of the standard two-fluid model of engineering multiphase flow, but their 
equivalence with other approaches, e.g. the one in which a mixture momentum and a 
disperse-phase impulse equation are formulated, is obvious and is discussed in $10. 

The closure of the model involves, among other quantities, the average continuous- 
phase pressure gradient, whose relation with the gradient of the average pressure is a 
well-known issue in multiphase flow theory (see e.g. Drew 1983; Prosperetti & Jones 
1984). This point is of particular importance because it is in relating these two 
quantities that many of the interphase momentum transfer effects - in particular, 
added mass - arise. Such closure terms are calculated explicitly for dilute suspensions 
by analytical means and numerically for the linear problem at finite volume fractions. 
The average pressure gradient is related to the gradient of the average pressure by the 
introduction of a coefficient that, in this case, is related to the added mass coefficients 
studied by Zuber (1964) and many others (see e.g. van Wijngaarden 1976; Kok 1989; 
Biesheuvel & Spoelstra 1989; Sangani, Zhang & Prosperetti 1991), and to the 'exertia' 
of Wallis (1991a, b). This new coefficient has, however, a much smaller range of 
variation in its dependence on volume fractions and densities and its use may therefore 
offer some practical advantages. 

Section 2 develops the basic mathematical tools, in $3 the general form of the 
averaged equations of motion is derived, and the 'small-particle' case is discussed in 
54. The dilute-limit results are presented in $ 5 with details of the calculation given in 
Appendix B. Section 6 is devoted to a discussion of small-amplitude oscillatory motion 
at finite volume fraction. Section 7 contains some details relevant for the numerical 
simulation of this case and the results are presented in $5 8 and 9. A general discussion 
and comparison is given in $10. 

2. Preliminaries 
We consider N identical spherical homogeneous particles in an infinite, unbounded, 

inviscid, incompressible fluid that constitutes the continuous phase. A specific 
configuration %?lV of the system is specified by a set of position vectors y" and velocity 
vectors wa for 01 = 1,2, . . . , N .  With suitable initial conditions, dynamical equations for 
the particles and the continuous phase, and conditions 'at infinity' for the latter, it is 
then possible in principle to uniquely calculate the evolution of the system in time. 
Since the particles are indistinguishable, which particle occupies which position is 
irrelevant. 

We consider an ensemble of realizations and denote by P ( N ;  t )  E P( 1,2, . . . , N ;  t )  the 
probability of a specific configuration %". In view of the identity of the particles the 
appropriate normalization is 

N !  = d%'" P(N;  t )  s 
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The equation expressing the conservation of the number of realizations constituting the 
ensemble under consideration is 

where we have introduced the abbreviated notation 

V, = V,,., A" = VWa. (2.3) 
These derivatives are of course to be understood in the generalized sense if P is not 
smooth. Equation (2.2) is to be integrated subject to a suitable initial condition and to 
the condition of vanishing at infinity both in velocity and in physical space. 

The reduced probability distribution P(K; t )  in which the configuration of Kparticles 
is specified is obtained from P(N; t )  by integration, 

P(K; t )  = ( N - K ) !  jP(N,  t )  d%"-K, (2.4) 

and satisfies the normalization condition 

N !  
( N - K ) ! '  

jP(K;  t )  d q K  = 

Let xc(x;  N )  be the indicator function of the continuous phase in the presence of the 
configuration %", i.e. xc = 1 when, given this configuration, x is in the continuous 
phase, and xc = 0 otherwise (see e.g. Drew 1983; Joseph & Lundgren 1990). Similarly, 
x D  will denote the indicator function of the disperse phase. Since the particle 
boundaries have zero measure, xc + x D  = 1. The volume fractions Pc of the continuous 
and pD of the disperse phase are defined in terms of these functions by 

from which, by (2.1), 
P C + P D  = 1. 

It is important to realize that the volume fractions depend on time only through the 
time dependence of the probability P ( N ; t ) .  The indicator function is a purely 
geometrical entity only depending on the configuration and on x. An alternative 
description would be possible in which the probability function refers to the initial 
condition and is independent of time, with all the quantities such as the indicator 
functions depending on time following the evolution of the system. The difference 
between the two points of view is conceptually similar to the Eulerian and Lagrangian 
descriptions in fluid mechanics. Just as in that case, the second description requires the 
introduction of the mapping between the initial and the current configuration and is 
therefore less convenient than the Eulerian-like description that we adopt. 

Similarly to (2.6), we may define conditional volume fractions /3E,D(x, t I K )  by 

J d% N - K  P(N; t )  xc, D(x; N )  
( N - K ) !  P(K; t )  K, D ( X >  t I K )  = 

- - ( N - K ) !  /d%""P(N-KI K ;  t )xc , , (x ;N) ,  

where the conditional probability P(N-K( K ;  t), defined by 

P ( N ;  t )  = P(N- KI K ;  t )  P(K; t ) ,  
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has been introduced. From (2.1) and (2.5) one deduces 
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[d%'N-XP(N-KIK; t )  = ( N - K ) !  (2.10) 
J 

It is easy to show that the conditional volume fractions satisfy the same relation (2.7) 
as the unconditional ones. 

For a configuration of equal spherical particles with radius a an explicit 
representation of the indicator function of the disperse phase is 

(2.1 1) 

with H the Heaviside distribution. In writing this equation we differ from the standard 
approach of kinetic theory (see e.g. Irving & Kirkwood 1950; Cercignani 1988), in 
which the spatial extent of the particles is ignored and the indicator function is written 
as 

N 

x&; N )  = t' c @-Y"), (2.12) 
a=l 

where u is the particle volume. This form of the characteristic function has recently 
been used by several researchers (Biesheuvel & Spoelstra 1989; Biesheuvel & Gorissen 
1990; Koch 1990; Sangani & Didwania 1993~).  On a technical level, it is the difference 
between (2.11) and (2.12) that renders the developments in this and the following 
section necessary. 

With (2.11) we find 

s - - 1 Id(r H(a - Ix - y( l )J )  d%' N - l  P(N;  t )  
( N -  l)!  

(2.13) 

where P(1; t )  = P(y ,  w ;  t). The step from the first to the second line is justified by the 
fact that the particles are all identical so that each of them gives the same contribution 
to the sum. The second step follows from the definition (2.4) of reduced probability 
distribution. By a similar calculation, 

We also define a local particle number density n by 

[d3wwP( 1 ; t )  = n b ,  t). (2.15) 

From the explicit representation (2.11) one finds the following expression for the 
space derivative of the continuous-phase indicator function : 

x-y" N 

a=l 
(2.16) 
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from which the gradient of the continuous phase volume fraction readily follows : 

dS@) n'") d 3 ~ ( a )  dVN-l P(N; t) 

(2.17) 

where n denotes the unit normal oriented outward from the particle. The time 
derivative of PC can be calculated by using (2.2) as follows: 

OPC = A i l  JX,-, I S  
dS,n d3wP(1;t) = S dS,nn(.v,t), 

= Jx-y l=a  S Ix-yl=a 

r r  N 
- - -& J dqNXc C [Va-(~"P)+A;(WL"P)] 

a=l 

N N 

d q N  C [V;(W"PX~)+A;(W"PX~)]+~ d q N P  C wa-VaxC. 
N !  a=l s a=l 

(2.18) 

Since P vanishes at infinity, the first integral vanishes. The terms Vaxc in the last sum 
can be calculated as in (2.16). Again in view of the identity of the particles, proceeding 
as in the derivation of (2.17), one then finds 

(2.19) 

2.1. Continuous-phase averages 
Let nowfc(x, t; N) be any flow quantity pertaining to the continuous phase at position 
x and time t in the presence of the configuration V N  of the particles. To clarify the 
meaning of the time dependence explicitly indicated in& it is important to make the 
following remark. If the continuous phase moves only in response to the motion of the 
particles, in the framework of potential flow, any flow quantity is completely known 
when the position and velocity of the particles - i.e. % - are assigned. In this case f, 
would not depend explicitly on time but only on x and %? N. The time dependence is only 
necessary to account for the presence of external agents promoting flow other than the 
particles, e.g. moving boundaries or time-dependent forces. 

The ensemble average offc is defined by averaging over all the configurations such 
that the point x is in the continuous phase, 

(2.20) 
(fc>(X,t) = ~ J d ~ ~ f , ( x , t ; ~ ) X a ( x ; ~ ) ~ ( ~ ; t ) .  1 

P C  N! 

The average thus defined is very useful because it is meaningful also in the case of 
quantities defined in only one phase, such as the pressure in a liquid-rigid particle 
suspension. As will be seen shortly, the price to be paid for this attractive feature is the 
non-commutativity with the operation of differentiation due to the lack of ordinary 
differentiability of the phase indicator function. In a similar way we introduce the 
average ( f C ) K  (x, t I K )  conditional on the configuration V of K particles by 

[dFN-KXC(x; N) fc(x, t; N)P(N-KIK; t). (2.21) 
( N  - K )  ! p: ( f c  > K  (x, t I K )  = 

7 FLM 261 



190 

It is a simple consequence of these definitions that 
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(2.22) 

By a calculation similar to that leading to (2.17) one finds 

v(Pc 6)) = Pc (Vfc) + i*-yl-undsy jd3wP(1 ; t )  (fc), (x, t I 11, 

V(fC> = (Vf,)+$S c lx-y/=u ds,nSd~wP(l,r)[(f,),(x.il I ) - < f c > ( X , t ) l .  (2.24) 

(2.23) 

or equivalently, by use of (2.17) to express VP,, 

To calculate the time derivative we proceed as in (2.18) and find, after an integration 
by parts in phase space, 

N 
wa-VaxC, (2.25) 

where the time derivative in the first term has been indicated with a special symbol as 
a reminder of the fact that it only acts on the explicit time dependence off,. This is in 
fact the partial time derivative off, for fixed x and M ' A ~ .  In the actual flow situation, 
fc depends on time not only explicitly, but also through the evolving particle 
configuration, which is clearly accounted for by the summation over a in the first term 
in the right-hand side of this equation. Hence we may write 

(2.26) 

where now the time derivative in the left-hand side is taken for constant x only. By 
introducing also the representation (2.16) of Vxc we finally have 

-co,(fc>) at = P c ( ~ ) - ~ d ~ y ~ d 3 w ~ ~ l ~ ~ ~ ~ ~ ~ ~ ~ c ~ l ,  (2.27) 
a 

or, using (2.17), 

By use of (2.23) and (2.27) we find 

a 
-(Pc i?t (fc>> $- v * CB, (f, U C ) )  = Be (%+ v. UC 4) 

-L s dSy d3wfV ; t> P2.W <.fc>1-n < f c  %)I]. (2.29) 

The surface integral is over the surface of all the particles that touch x. For all such 
particles the velocity field satisfies the kinematic boundary condition 

n.w=n.u,(x,tlN), (2.30) 
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and, since w (fc>l = ( ~ f , ) ~ ,  the integral term in (2.29) vanishes identically so that 
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(2.3 1) 

The derivation of the corresponding result for the conditionally averaged f ,  is 
somewhat more involved. Since we only have a limited need for this result in the 
following, this derivation is presented in Appendix A. 

a 
- at cs, (f,>> + v.  CB, ( f ,  %>I = P, (%+ V-U, 4). 

2.2. Disperse-phase averages 
For a quantity fD(x, t ;  N )  pertaining to the disperse phase the ensemble average is 

defined analogously to (2.20) as 

(2.32) 
( f D > ( x ,  t, =-bNP(N;t)Xi,fD(x, 1 t;N). 

N !  P D  

Conditional averages are defined similarly to (2.21), 

By using the explicit representation (2.1 1) of the particle indicator function xD, by 
virtue of the identity of the particles, the average (2.32) may equivalently be written as 

wherefTd)(x, t ; N )  denotes the value off, inside the particle centred at y(l) or, with 

(fD> (x, t, = '1 d3y1d3w/3h (fi)>l ; t)* (2.35) 

Iff;) does not depend explicitly on the configuration of the other particles, this relation 
simplifies to 

(fD>(X,t) ='s d3YJd3wP;fD(x,t; l)P(l;t). (2.36) 

It is readily shown from the expression (2.14) for P i  that, owing to the restriction ly - XI 
< a on the domain of integration, here 

In dealing with the disperse phase, a different kind of average is useful for quantities 
g(")(t; N )  pertaining to each particle as a whole. Examples may be the centre-of-mass 
velocity, momentum, orientation, shape parameters (although here we only consider 
spherical particles), and others. For quantities of this type we define the ensemble 
average over all the configurations such that one particle centre is at x by 

(2.331, 

P D  Iy-xlGa 

P D  ly-xlsa 

= 1. 

(2.37) 
1 

g(x, t) = _ _ _ ~  
n(x, t) ( N -  l)! 

where the identity of the particles has been used. If the quantity g(l) does not depend 
explicitly on the configuration of the other particles, this definition reduces to 

g(x, t) = -sd3wP(x, w ;  t)g(')(x, w, t). 
1 

(2.38) 
n(x, t> 

7-2 
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In the point-particle approximation of (2.12), the average (2.32) becomes identical with 
(2.3 7). 

From the definition (2.37), after multiplication by n and use of the probability 
equation (2.2), we have 

The terms corresponding to a = 2,3,. . . , Ncan be integrated by parts as before and one 
is left with 

(2.40) , (ng)+v. (n~@ = n p ,  

g ( 1 )  = __ + C ( wa * V ,  g(l) + *a * A, g")). (2.41) 
2t ,-I 

Since one may consider the field g(l) as defined at particle centres, this result is the same 
as a standard one in kinetic theory. 

Corresponding transport equations for averages of the type ( f D )  can also be derived 
but they will not be needed in the following. 

We now apply these relations to the derivation of the equations of motion of the 
phases. 

a 

where, as in (2.26), 
3g(U N 

3. The averaged equations 

the continuous phase are 
With the neglect of viscous effects and compressibility, the equations of motion of 

v - u ,  = 0, (3.1) 

(3.2) 

where uc and pc denote the velocity and pressure field, pc is the density, assumed 
constant, and g a body force. Upon takingf, = 1 in (2.31) and using the continuity 
equation (3.1) we have 

auc 1 
-+V.(u,u,) = --vp,+g, 
at Pc 

(3.3) 
a P C  -+v*(PC(uc)) = 0. 
at 

By takingf, = uc, we have from (2.31) and (3.2) 

a 
P , & V C  ( U c ) )  +P c v .  (Pc ( U c )  ( U c ) )  +Pc v ( P C )  

= Pc A,@, t> +PC '17- (Pc M C )  +Pc Peg? (3.4) 
where we have introduced the Reynolds-like (kinematic) stress tensor 

M c  = (UC) (uc> - (uc UC) 

and we have set 

or, from (2.24), 

Ac(x, t )  = - J n ds, jk ; t )  d 3 4 ( p c ) ,  (x, t I 1)- (Pc> (x ,  01- (3.7) 

Equation (3.4) has been written in terms of the gradient of the average pressure in 
conformity with the standard form of the widely used two-fluid models. This step 

Pc lx-yl-a 
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introduces the quantity A ,  defined by (3.6) which must evidently contain inter-phase 
momentum interactions. Qualitatively, this is so since the first term in A ,  is clearly 
sensitive to the macroscale flow properties, while the second one also contains 
information on microscale phenomena. As shown in Prosperetti & Jones (1984), this 
separation of scales is essential for a proper understanding of the role of pressure forces 
in disperse flows. The formal definition (3.6) has the advantage of introducing a clear 
operational prescription to effect this scale separation even for concentrated mixtures 
for which one cannot unambiguously rely on order-of-magnitude arguments. Other 
approaches to the inter-phase momentum interaction are possible, such as the direct 
computation of the forces exerted by each phase on the other one (see e.g. Sangani et 
al. 1991 and 97 below). Such calculations can provide useful checks, but it would seem 
that, ultimately, any two-phase model of engineering significance would have the 
structure exhibited by (3.4). 

If particles collide, a reaction force will also act on the liquid. Formally, this may be 
considered as arising from the action of forces, highly localized in space and time, 
appearing in the right-hand side of the Euler equation (3.2). Since we shall have no 
need for these effects, we have not included them in (3.4). In this connection, see 94 
below. 

To obtain averaged equations for the disperse phase we use the general relation 
(2.40). By taking g(l) = 1 we have the conservation equation for the particle number 
density n, 

(3.8) 
an 
-+V.(nw) = 0. 

Since the particles are assumed to be homogeneous, w is the average velocity field of 
the particles' centres of mass. 

at  

In the present inviscid framework, the equation of motion of a particle is 

m k  = - J dS,P,(Z, t;N)n+mg+F,, (3.9) 
Ix-zI=u 

where m is the (constant) particle mass and F, is the force due to collisions with other 
particles. By taking in (2.40) g(l) = mw we have 

a(nmiv) 
+ V - ( n m m )  = nmii. 

at  
(3.10) 

Carrying out the average of (3.9) according to (2.37) and substituting in the right-hand 
side, we find the averaged momentum equation for the particle with centre of mass 
at x: 

n -  
+V.(nww) = -- I dS, n /d3w (p,),(z, t I 1) P(x,  w ;  t) + ng+-F,. (3.11) 

a(nw) 
at  m Ix-zl=u m 

With 

and 

equation (3.1 1) becomes, for constant p, = m/v, 

a 
p, - (n W) + p, V. (n w w) = - nV ( p c )  + p, V.(nM,) + np,g + nA, +cE, (3.14) 

at  V 

where p, is the density of the disperse-phase material. A subtle but crucial difference 
between A, and A ,  should be noted here. The first quantity is the result of an integral 
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over all the particles touching the point x. The second one, on the other hand, involves 
the integral over the surface of a single particle centred at x. The two integrals will be 
equal for a uniform dispersion, but differences are to be expected in the general case. 
This point will be seen more clearly in the next section where an approximate relation 
between A ,  and A ,  is derived. Explicit forms for these two quantities applicable for 
the dilute case are given in 95. For future reference we note an alternative form of (3.10) 
obtained by use of the particle number conservation equation (3.8) and the definition 

(3.15) 

Of MD, 

- aF 1 
w = -+W-Vii i - -V.(nM,) .  

at n 

Several analyses in the multiphase flow literature derive the disperse-phase 
momentum equation by averaging the microscopic equation of motion for the particle 
material and using the boundary conditions at the surface of each particle. This 
procedure exactly parallels the treatment given above for the continuous phase and it 
can easily be developed here as well (Zhang 1993). The approach is, however, much less 
straightforward and runs into difficulties, e.g. for rigid particles or massless bubbles, 
and artifices are necessary to deal with these situations (see e.g. Batchelor 1970; 
Sangani & Didwania 1993a). In contrast, we have chosen to treat the particles as 
entities in themselves at the outset and to obtain the average disperse-phase momentum 
equation by averaging their equation of motion directly. This approach is evidently 
more ‘economical’ in the same sense as in ordinary mechanics where the description 
of a rigid-body motion in terms of its independent degrees of freedom is simpler than 
in terms of the motion of its individual material points because the infinitely many 
kinematic constraints of rigidity are automatically accounted for. Clearly, this method 
can be extended to any situation in which there are ‘attributes’ that can be ascribed to 
the individual particles. For example, for spherical expanding or contracting bubbles, 
one can attribute a value of the radius to each bubble and average the corresponding 
evolution equation as shown in Zhang & Prosperetti (1994). More general situations 
could be handled by ascribing to each bubble shape parameters and averaging the 
corresponding evolution equations. As another example, for rigid particles with 
complex shapes, in addition to the centre-of-mass momentum equation, one would 
average the single-particle angular momentum equation. In this way, the disperse 
phase would be described by the field of average centre velocities w and the field of 
average angular velocities. Such an approach for the case of ellipsoidal particles is 
currently being developed. 

The set of averaged equations derived above is not closed since the right-hand sides 
contain averages with one particle held fixed and averages of products that must be 
expressed as products of averages. Both these difficulties are, of course, well known. In 
principle, one can generate averaged equations correct to any order ( P J K  of the 
disperse-phase volume fraction by writing down the equations averaged with K 
particles held fixed, and realizing that the terms involving K+1 fixed particles that 
appear give rise to contributions of higher order and can therefore be neglected. With 
this approximation the order-Kequations are closed and can be solved. These solutions 
are then used to calculate the averages with K particles fixed that appear in the 
equations of order K-1, and so on. In this way a closed set of equations for the 
unconditionally averaged fields can in principle be obtained. We demonstrate the first 
step of this closure procedure in 95. While it is doubtful that such a plan can be carried 
out beyond, say, 0(,8,)’, our equations also provide a useful basis for the analysis of 
the results of numerical simulations as will be explained in 9 10. 
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Since we are neglecting the viscosity of the continuous phase, it is interesting to 
consider whether a microscopically irrotational flow will retain this property after 
averaging. By use of the differentiation rule (2.24) one finds 

V x ( u C )  = (V x u C )  -- d3w dS, P( 1 ; t )  ( ( u ~ ) ~  - (u,)) x n. (3.16) 
P C  ' I  I 

This relation shows that irrotationality is maintained to O(l), but not to OU,). The 
delicate local balance responsible for giving V x uC = 0 is upset by the averaging 
process. This result may be interpreted physically as follows. A component of the 
vorticity at x is essentially proportional to the circulation of the velocity field around 
a small contour centred at x. Since the flow is irrotational, this circulation is zero for 
all the realizations where the contour lies wholly in the continuous phase. However, for 
some realizations, the contour will be interrupted by the presence of particles, and in 
this case the integration will not give a vanishing result for a non-uniform state. 

A similar calculation gives, using the fact that w is an independent variable, 

V X W = - -  ( w - ~ ) x V P ( x , w ; t ) d ~ w .  (3.17) 

This result would also hold in the presence of viscous flow inside the particles as w is 
not the velocity field in the particle phase, but the velocity of the centre of mass of the 
particles. Contrary to the continuous-phase average vorticity relation (3.16), the 
rotational character of the mean centre-of-mass particle velocity field depends on the 
probability distribution and does not necessarily vanish to O( 1). 

n 'S 

4. Small-particle approximation 
The equations derived in the preceding sections contain several terms involving 

integration over spheres with a radius equal to the particle radius a. When the averaged 
quantities vary slowly on this scale, these integrals may be approximated by Taylor 
series expansions. 

For the disperse-phase volume fraction (2.13) this procedure leads to 

PD(x, t )  = v[n(x, t )  +&a2 V2n(x, t )  + O(a4)]. (4.1) 
This relation gives the leading-order correction term to the widely used approximation 
PD = nv. 

In a similar fashion we can obtain an approximate relation between the ensemble- 
average disperse-phase velocity (u?) (x, t )  defined according to (2.32) or (2.35) and the 
mean particle centre-of-mass velocity ~ ( x ,  t). Since here we confine ourselves to rigid 
particles, the velocity field U ~ ' ( X ,  t ;  N )  inside the ath particle is given by 

( 4 4  
where 52'") is the angular velocity around the instantaneous axis of rotation through the 
particle centre y". Upon substitution into (2.36) one finds 

U g ' ( x ,  t ; N )  = w'") +a'"' x (x -y'"'), 

( U D )  (x, t )  = - J n O l , t > [ w O l , t > + 0 ~ , t ) x ( x - y ) 1 d 3 y .  (4.3) 
PD Ix-ylGu 

At this point a Taylor series expansion centred at x gives 

1 1 
n 

(uD)(x,t) = w(x, t )+&a2 V ~ W + V X S ~ + - ( V ~ . V W + V ~ X ~ ) + O ( ~ ~ )  . (4.4) 
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The evaluation of the correction term in square brackets requires a dynamical equation 
for a. For the present inviscid flow situation, if the particles are smooth so that no 
tangential force arises upon collision, clearly = 0. This may be used as a starting 
point for the derivation. Since we shall have no use for this result, we do not pursue 
the matter further. It may be noted, however, that the dependence of ( u D )  on a(.), 
which, in the present hypotheses, is an irrelevant quantity as far as the average linear 
momentum of the disperse phase is concerned, lends further support to the point of 
view adopted in the present paper according to which W, rather than (u,), is the 
fundamental disperse-phase velocity field. Indeed, it is evident that, by a suitable 
manipulation of the initial conditions for a("), (u,) can be made to differ arbitrarily 
much from W, even though this difference can in no way alter the motion of the 
particles. If the particle momentum equation were based on (u,) ,  one would have to 
include the terms necessary to cancel this spurious effect. 

Expanding the integrand we also readily find 

with an error of order a4. With this relation, and dropping terms of order aa and higher, 
the expression (3.13) for A ,  may be written as 

PD A,(x, t )  = - d3wP(x, W ;  t)  j 

La s 
dS, n[(pc)1 (z, t I x, w) - ( P c >  (z, t)l, (4.6) s /x-zI=a 

or, upon setting z = x + s, 

P D  AD(x, t )  = - dSs n d3 wP(x, w ;  1) [(pc>l (x + s, f I x, w) - ( p C >  (x + s, t)I* 

(4.7) 

Using this expression as a starting point we may derive an approximate relation 
between A ,  and A ,  and simplify the expression of the latter. To explain the pro- 
cedure (Hinch 1977; Sangani & Didwania 1993a), consider the term ( ~ ~ ) ~ ( x ,  t (  1) = 
(p,) ,  (x, t I y, w) of the integrand in the expression (3.7) of A,. Since in the integral 
Ix -y (  = a, this quantity may be also written as (pc) lo)+s ,  t Jy, w), withy = x+s and 
)sJ = a. In the absence of extreme gradients of the average fields, this quantity depends 
slowly on y, which denotes the particle centre, and rapidly on s, which is the position 
relative to the centre. This consideration justifies a series expansion in y around x for 
fixed s: 

P(1;  0 [ ( P C > l  (x7 t I 1) - ( P C )  (x, 01 
= pot, w ;  t )  [ ( P C ) ,  b + S ?  t IY, w)- (Pc> b+s, 01 
25 P(x,  w ;  0 [ ( P C > l  (x+s7 1 I x, 4 - (Pc> (x+s7 01 

+ s . V , { f W  w ; ~ > [ ( P c > , ( x + s ,  tIu,w)-(Pc)(X+S,t)l}. (4.8) 

(4.9) 

Upon substitution into (3.7) and comparison with (4.7), we then find 

Pc Ac = -PoAD+V.CBD Tc), 
where the additional stress tensor Tc is defined by 

d~,nn[(Pc),(Z,tlx, w>-<Pc>(X?t)l. (4.10) 
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For a general case in which truncation of the expansion to the second term as in (4.8) 
is invalid, one might regard (4.9) as the deJinition of T,. That the sum PcAc+PDA,  
can be expressed as a divergence would then follow from Lagrange’s form of Taylor’s 
theorem, the applicability of which only rests on the existence of the first derivatives 

For purposes of comparison with other investigators’ results it is useful to exhibit 
explicitly the form of the momentum equations obtained by adopting the small-particle 
approximations developed here. They are 

of (PC>l.  

= -P,A,k t ) + V * C 6 , P c 4 + P D  T,)+P,PCg-(Fc,), (4.12) 

where - (FCJ is the mean force on the liquid due to particle collisions. From the last 
equation one can gain a further understanding of the physical origin of the stress T,. 
Consider a surface element dS in the mixture around a point x and the force that the 
mixture on one side of dS  exerts on the mixture on the other side. This force differs 
from that due to the average pressure ( p , )  because x lies on a particle surface with a 
finite probability. Suppose that the particle velocity distribution is biased toward a 
certain direction. If dS  is taken parallel to this direction, in view of the pressure 
distribution around a particle in potential flow, the extra pressure on it will tend to be 
lower than ( p C ) .  On the other hand, if dS is taken orthogonal to the direction of 
motion, x tends to be close to the stagnation point on the particle surface and therefore 
the contribution to the pressure force will be higher than (p,) .  The dependence of the 
force on the orientation of dS is characteristic of the action of a stress. 

Although one might expect the two collision contributions to balance in the uniform 
case, we avoid enforcing this condition in general as the same mechanism that makes 
PC A ,  different from PD A ,  might be at work here. 

5. Averaged equations to first order 
We study here the dilute limit in which the particles introduce an O@,) correction 

to the continuous-phase equations. This case is interesting not only because it is the 
simplest one in which the closure program outlined above can rigorously be carried 
out, but also because it gives some insight into the structure of the equations that may 
prove useful in future numerical investigations of the finite-volume-fraction case. 

According to the definitions (3.7) and (3.13), the evaluation of A ,  and A ,  requires 
the conditionally averaged pressure field ( P ~ ) ~ .  Since in the continuous-phase 
momentum equation ( P , ) ~  appears in a term of OV,) (cf. (3.7)), for results accurate 
to O(j3,) it is sufficient to calculate this quantity correct to O(1). The pertinent 
equations are given in Appendix A and, to O( 1) and with the neglect of the body force, 
they are 

v .  (%)I = 0, (5.1) 
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All the fields are averaged conditionally to the presence of a particle centred at y with 
velocity w. For Ix -yI +a, the effect of this particle becomes weaker so that (Batchelor 
1972) 

Upon taking the conditional average of (2.30) we find the following form of the 
kinematic boundary condition to be applied at the surface of the particle: 

(u,),.n = wen. (5.4) 
The solution of this problem is given in detail in Appendix B. It is based on the 

representation of ( u ~ ) ~  in terms of a scalar potential since departures from 
irrotationality are of higher order in /3, as shown by (3.16). For the disperse-phase term 
A ,  we find 

Aside from the Reynolds-stress-like term MD, this expression agrees with the result for 
the force on a single sphere immersed in a flow obtained by several researchers and, 
most recently, by Auton, Hunt & Prud’homme (1988). Here and in the rest of this 
section we write (u,) in place of w which is permissible to O(p,) on the basis of (4.4). 

In Appendix B we find the following expression for the stress tensor T, appearing 
in the expression (4.9) of A,:  

T --I c - ,P,[2((UC) - <u,))2 /-%uc> - (%I)) ( (uc)  - (u,>>l 
- kp J2(Tr M D )  I - 94,]. (5.6) 

This result is valid to O(1) and is obtained by expanding (u,) in Taylor series about 
a particle centre. Accordingly the error is of the order of the square of the ratio of the 
particle size to the macroscopic lengthscale. As a check of the approximation used in 
(4.Q we have calculated A ,  directly from its definition (3.6), correct to O(pD), finding 
a result identical to (4.9) with T, given by (5.6). 

In Appendix B we also find, to the same degree of approximation, 

M, = -z?iiPoE3((uc) -(u,>).(<uc>-(uD))/ 

+(<~c>-<~D>)(<u,>-(u,>)l+~/3,[3(TrM,)l+M,1. (5.7) 
The terms in the first square brackets are the same as the result obtained by Biesheuvel 
& van Wijngaarden (1984), who, however, implicitly assumed the bubbles to move with 
the same velocity, which implies M, = 0. 

While the previous results for M, and T, are frame-indifferent, the expression (5.5) 
for A ,  is not. This fact is not surprising as, in the derivation, the flow is assumed to 
be irrotational, a fact that forbids the use of a rotating coordinate system. The previous 
expression can, however, easily be corrected so as to be applicable to a frame rotating 
with angular velocity SZ. Indeed, since both the gradient operator and p ,  are frame- 
indifferent, it follows from the definitions (3.6), (3.13) that so must be A ,  and A,. 
Hence we add to each one of these quantities a new term to be determined in such a 
way that, upon changing from an inertial to a rotating frame, the result is frame- 
indifferent. The calculation is given in Appendix B. The result is unique and is found 
to be 

where the first term in the right-hand side is given by (5.5). 
Ah = AJl-pC52 ( < u D ) - ( U C ) ) 3  (5 .8)  
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If we assume objectivity (Drew, Cheng & Lahey 1979), this result is also applicable 
to the case of a mixture rotating with the angular velocity -51, which may be 
approximated by -+V x (uc)  provided this quantity is slowly varying in space. We 
thus have 

= A D  +&C(v (uC>) ( ( u D )  - ( u C > ) -  (5.9) 

The corresponding expression for A', follows from (4.9) with A; in place of A,. The 
additional term in (5.9) is the familiar lift force (see e.g. Auton et al. 1988). The 
recovery of this result confirms the validity of the objectivity principle in this case. 

Combining the previous results we have the final form of the momentum equations. 
For the disperse phase we find 

Similarly, the final form of the continuous-phase momentum equation is 

-$CpD(' (uC>) ( ( u D ) - ( u C ) ) + % C  v ' { p D [ ( ( u C > - ( u D > ) 2 '  

- 2 ( ( u C ) - ( u , ) ) ( ( u C ) - ( u D > > 1 > - ~ p C v [ P D ( T r M D ) 1 + p C p C g .  (5.11) 

A comparison with the results of others and a discussion of these equations is given in 
0 10. 

Closure of the system requires an expression for the fluctuating particle volume flux 
tensor M, (see e.g. Drew 1991). This missing information cannot be supplied internally 
by the theory without a specification of the initial conditions imposed on the particle 
probability distribution. This point was noted by Biesheuvel & Spoelstra (1989) who 
explicitly assumed that, at each position and time, the particle velocity probability 
distribution is strongly peaked around its local, instantaneous mean value. In this case 
M, = 0. A similar assumption - whether explicit or implicit - seems to be present in 
most of the previous work. 

6. The linear problem at finite volume fractions 

the momentum equations simplify to 
We now consider the case of finite volume fractions for the linear problem for which 
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With the assumption of weak non-homogeneity, i.e. that the volume fraction is nearly 
uniform, one can determine on the basis of rather general considerations the form of 
‘constitutive laws’ for A ,  and A,. 

Let us consider A ,  first. The primary variables in our system are the average pressure 
( p c ) ,  the average velocities (u,) and W, and the volume fraction of the disperse phase 
P,. If the momentum equations (6. l), (6.2), together with the continuity equations, are 
to form a closed system, then A ,  must be expressible in terms of these quantities and, 
possibly, their derivatives. We can however disregard (p , )  because, for an 
incompressible fluid, pressure is only defined up to an arbitrary constant that the 
explicit form (3.13) for A,  proves to be irrelevant, and V ( p c )  can also be disregarded 
because it can be expressed in terms of the other variables from the momentum 
equations. Similarly, we can neglect the body force g because it can be absorbed in p c  
by a suitable redefinition of this quantity that would leave A,  unchanged, as readily 
follows from its definition. 

The fact that we are dealing with a linear problem without dissipation rules out the 
presence of the velocities (u,), w and of their spatial derivatives because they do not 
have the correct behaviour under time reversal. A term of the form (uc )  aB,/at has the 
correct time-reversal symmetry but, upon use of the continuity equations, it is seen to 
be quadratic in the velocities and therefore negligible under the present approximations. 

One is then left with a general structure that may be written in the form 

(6.3) 1 a 
D - ZPCPC c . , ( ( U c > - - W ) + E . - ( ( U C ) + ~ )  at 9 [ a  

A --1. 

where the coefficients C, E are second-order tensors that can depend upon pD/pc, Po, 
VP,. In this list we do not include a/3,,,/at because of linearity and time-reversal 
invariance. In the assumption of weak spatial gradients of the volume fractions we 
allow terms that are at most linear in VP, = -Ope. However, it is impossible to 
linearly build a second-order tensor with the vector VP,, so that C and € must be 
isotropic, e.g. C = C/. Furthermore, if the frame of reference is changed to one in 
arbitrary rectilinear motion with respect to the original one, the local value of p c  
cannot be affected, and therefore, from its definition, neither can A,. Alternatively, an 
apparent force of constant direction can be absorbed in the body force g and therefore 
cannot affect A,. Hence € must vanish and one is left with 

(6 * 4) 

Here the leading terms that have been neglected are proportional to IVPC,J2 and 
V2PC,,, and hence are proportional to the inverse square of the macroscopic length L 
associated with the particle distribution. 

a A - A  
D - z ~ c  Pc CCam PD/PC> t ( (uc )  - w). 

A similar argument applied to T, gives 

where Ill, = Dl, &3,, pD/pc). The dilute-limit results of the previous section show that 
both D, and D, vanish for PD = 0. With A ,  given by (6.4), equation (4.9) provides an 
expression for A,. Actually, the divergence of T, rather than Tc itself enters in this 
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relation. Therefore, whenever the characteristic length associated with this divergence 
is comparable with, or longer than, that associated with the PD distribution, V.@, Tc) 
is of the same order as the terms that have been neglected in the previous developments 
and can be disregarded. In this case, to a consistent approximation, 

(6.6) 
a A -1 c - z ~ c  P D  CUD, PD/PC> t (W- ( ~ c ) ) .  

We shall assume this form in the following. (With this hypothesis about characteristic 
lengthscales, as shown by (4.4), to the same accuracy we can also assume w = (u?) .  
Since the angular momentum of the particles is conserved, there is no loss of generality 
in assuming a vanishing initial particle angular velocity for the present purposes.) 

The coefficient C appearing in (6.4), (6.6) is related to the added-mass coefficient 
variously defined in the literature, as we show in the next section. Under the hypotheses 
outlined above, for results correct to Ov,) included, it is sufficient to determine C for 
the case of a uniform mixture, which will be accomplished by direct numerical 
simulation in the following sections. 

7. Connection with the added-mass coefficient 
The previous results are related to earlier work devoted to the added-mass 

interaction in an inviscid incompressible liquid containing a collection of spheres as we 
now describe. 

In a recent paper, Sangani et al. (1991) considered the linear oscillatory motion of 
a suspension of rigid spheres at large Reynolds numbers, a problem that is equivalent, 
as is easily shown (Sangani & Prosperetti 1993), to the case of impulsive motion studied 
by van Wijngaarden (1976). Motivated by the expression for the force F acting on a 
single particle with velocity w immersed in an incompressible inviscid flow with velocity 
u, at infinity, 

Sangani et al. express the average force per particle in the form 

F = ;/Ic v(ti, - * i t>  + pc Uti,, (7.1) 

( 7 4  
a a (F> = K a  PC v t ((urn) - W) + PC 2) t (urn), 

where Ca is defined as the added-mass coefficient and (u,) is the average volumetric 
flow rate of the mixture 

It should be noted that, by the manner of its derivation (see e.g. Landau & Lifshitz 
1959), (7.1) presupposes a locally uniform pressure gradient acting on the liquid. 
Similarly, it is only under these hypotheses that (7.2) can be considered a correct 
representation of the force on the disperse phase and, indeed, Sangani et al. (199 1) limit 
their considerations to the case g = 0 with a microscopic pressure field of the special 
form 

(urn) = Pc <uC> + P D  W. (7.3) 

pC(x ,  t ; N )  = -G( t ) *x+$(x-VN;  t),  (7.4) 

where, in the last term, x - V is shorthand for x -y('), x - y @ ) ,  . . . x - Y ( ~ ) .  For more 
general pressure distributions, while the fluid-particles interaction may still be 
represented by the first term in the right-hand side of (7.2), the effect of the driving 
pressure field would not be adequately expressed by the second term. 
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translationally invariant, upon averaging (7.4) one finds a result of the form 
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Since the first term does not depend on the configuration and the second one is 

( P C )  = -G.x+F(t) ,  (7.5) 

with F(t) independent of position. With (6.6) and (6.4) we can then write the 
momentum equations (6.1), (6.2) as 

from which 

G. aw c + 2  _ -  
at  - BCCPC+(~+PDC>PD 

The form (7.2) implies an averaged particle equation of motion given by 

aw 
at 

V P D -  = ( F ) .  

(7.9) 

(7.10) 

Upon substitution of (7.8) and (7.9) into the right-hand side of this equation we find 

(7.11) 

which is only equal to (7.9) if 

c= (1-pD)c,-2pD, c, =-. c + 2PD (7.12) 

It would seem that one might derive this relation by eliminating V ( p c )  between (6.1), 
(6.2) and requiring the result to be identically equal to (7.10). This procedure would be 
incorrect, however (as signalled by the fact that the relation between C, and C found 
in this way would depend on i?(uc)/i3t) because, as noted before, (7.2) can be 
considered an adequate representation of the disperse-phase force only for a spatially 
uniform imposed pressure gradient. 

Van Wijngaarden (1976) and Kok (1989) calculated C, in the dilute limit and found, 
respectively, 

(7.13) 

Biesheuvel & Spoelstra (1989) showed that the difference between these two dilute-limit 
results was due to assumptions implicitly made on the final state of the dispersion after 
the action of the impulsive forces that are assumed to generate the motion. In van 
Wijngaarden’s work, the final particle velocity distribution was the result of the 
dynamics occurring during the acceleration. In Kok’s and Biesheuvel & Spoelstra’s 
approach, on the other hand, it is assumed that the final velocity distribution is 
uniform. As shown in Sangani e f  al. (1991), other values of the added-mass coefficient 

1 - P D  

C, = 1 + 2.76& + (?(pi), C, = 1 + 3.32pD + Oij!?;). 
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can be obtained with different velocity distributions. Zuber's (1 964) well-known result 
for C, is 

C,=-. 1 + 2PD 
1 - P D  

(7.14) 

Upon substitution into (7.12) of the two expressions (7.13) for C, one finds the dilute- 
limit results 

(7.15) 

while Zuber's expression simply gives C = 1. 
At finite volume fractions, it was found in Sangani et al. (1991) that Zuber's 

expression (7.14) fits quite well the numerical results irrespective of pD/pc up to volume 
fractions as large as 50 YO. Upon comparison of (7.14) with (7.12), we thus expect that 
the new coefficient C that we have introduced will be very nearly constant and equal 
to 1. This expectation is borne out by the computational results of $9. 

C M 1 - 0.24pD + O(&,), C x 1 + 0.32PD + O(&), 

8. Computational implementation 
Equation (7.12) expresses a connection between the coefficient C introduced in (6.4) 

and the coefficient C, studied in Sangani et al. (1991). The numerical values of C could 
therefore be directly obtained from that study. Nevertheless, we have recalculated them 
so as to check directly the validity of the relation (7.12) and also to obtain some further 
statistical information on the convergence of the averaging process. 

The details of the method can be found in Sangani et al. (1991). We arrange N, 
spheres in a regular array in a cubic cell and then subject each one of them to several 
thousands of random displacements. A pseudo-random infinite mixture is generated by 
filling the whole space with copies of this fundamental random cell. The collection of 
many such realizations constitutes the statistical ensemble. We take advantage of the 
spatial uniformity prevailing on average to simplify the calculations and to accelerate 
convergence. Rather than fixing a point x and averaging over the values taken by the 
fields at that position in the various realizations of the mixture, for each realization, we 
first calculate volume averages over the fundamental cell and then average these values 
over the different realizations. It is the result of this combined average that we identify 
with the ensemble average ( ) used in the previous sections. 

The pressure field is taken to have the form (7.4) with the part p:(x-'YN; t )  due to 
the response of the bubbles to the mean gradient G calculated by a singularity method. 
With the pressure determined, from (3.9) (without the collision force, which is 
irrelevant for linear motion) one can calculate t+ for each particle in the unit cell and 
its mean for each configuration 

(8.1) 
* 1 N s  t+ = - c &a) 

Ns a=l 

The volume-averaged fluid acceleration 6, is obtained directly from a knowledge of 6 
noting that 
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Here V, is the part of the fundamental cell Voccupied by the continuous phase. The first 
step follows from an application of the (generalized) divergence theorem to the domain 
of integration. The integral of p z  over the boundary al/ of the fundamental cell 
vanishes by periodicity, and the integral ofp, over the surface of the particles (with the 
normal directed out of the particles) is just the particle mass times its acceleration. In 
all realizations the volume fractions are the same so that, identifying N s / V  with the 
particle number density n, we may write mN,/ V = p, vn = po /I,, 

Upon averaging the previous result over the realizations of the ensemble we find 

It is readily verified using this result that the left-hand sides of (7.6) and (7.7) differ by 
a sign, which confirms the relation ,&Ac +PD A ,  = 0 for this case. From either one of 
these relations, therefore, the coefficient C can be calculated from 6 obtained as 
specified above. 

Here the relation PcAc+P,A,  = 0 holds not only in an ensemble-average sense, 
but also for each configuration in the sense of volume averaging. To show this we start 
by noting that, while the mixture is isotropic on average, each individual realization is 
not isotropic so that the volume-average analogue of C is a tensor. We therefore 
rewrite (7.6), (7.7) in the form 

These equations are readily proven to be identical by virtue of (8.2). The numerical 
evidence indicates that, for each configuration, the tensor C is symmetric. 

In the next section we discuss the results derived from the numerical implementation 
of the approach outlined here. 

9. Numerical results 
We show in figure 1 a graph of C versus the disperse-phase volume fraction ,dD for 

different values of the density ratio pD/pc. The horizontal dashed line is Zuber’s result 
C = 1. The two straight solid lines issuing from C = 1, P D  = 0 are the dilute-limit 
results (7.15) for pD/pc = 0 and infinity, respectively. The range of variation of C is 
remarkably limited. For any density ratio, it remains within 10% of 1 for volume 
fractions as large as 30 YO. For p, < pc this range extends to over 50 YO. The 
dependence on concentration is somewhat stronger when the particle density is much 
greater than the fluid density, but the maximum difference is about 20% all the way 
up to nearly close-packing. 

To obtain these results, for each volume fraction, we used 40 realizations of 32 
particles in the fundamental cell. To assess the randomness of the configurations we 
checked the pair distribution function and found a very good agreement with the exact 
solution of the Percus-Yevick equation for hard spheres. For each realization we have 
taken the imposed pressure gradient G in three mutually orthogonal directions, which 
effectively triples the number of different realizations of the mixture. At the lower 
volume fractions (up to 30%), where the interparticle distance tends to be large, we 
used from three to five singularities per particle (see Sangani et al. 1991 for details). At 
larger volume fractions seven singularities per particle were used. Our study of the 
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FIGURE 1 .  The coefficient C defined by (6.4) as a function of the disperse-phase volume fraction p, 
for different values of the ratio pJp, of the disperse- to the continuous-phase density. The two 
straight lines issuing from C = 1 ,  /ID = 0 are the dilute-limit results (7.15) for pD/pc = 0 and infinity, 
respectively. The other lines correspond, in ascending order, to pD/pc = 0, 0.1, 1, 10, 100. 
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FIGURE 2. Percent of spheres separated by less than 0.0004 times the particle radius from 
neighbouring spheres as a function of the disperse-phase volume fraction p,. These results have been 
obtained from the configurations used to generated the previous figure. 

reliability of this numerical method shows that these values are quite sufficient for 
accuracy and reproducibility well within 1 YO. 

A rather striking aspect of figure 1 is the marked change of slope occurring around 
PD = 0.45. This feature is not a numerical artifact but is in fact quite robust and it most 
likely corresponds to the disorder-to-order phase transition for hard spheres that is 
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known to take place in this region (Hansen & McDonald 1986). To test the nature of 
this phase change we have calculated, as a function of the volume fraction Po, the 
fraction of spheres separated by less than Fa, for different values of e. With the 
configurations used, this curve is rather irregular unless e is very small. Results for e = 
0.0004 (i.e. a separation of 4 x times the radius) are shown in figure 2. Although 
the number of pairs of particles so close together is small, it is seen to undergo a 
transition and to increase very markedly for p D  between 0.4 and 0.5. The peculiar 
structure of the curves in figure 1 may therefore be due to the formation of nearly 
touching sphere clusters in this range, although this is at this stage only a hypothesis. 
In our earlier paper (Sangani et al. 1991) the quantity plotted was C, rather than C and 
the different scale necessary to accommodate the greater range of variation obscured 
this feature. 

The results shown in figure 1 are averages. Information on the range of variation of 
C would also be valuable. This cannot be obtained for C directly, however, because 
only one value of this quantity is determined from the ensemble. However, we can 
study this question by calculating the volume-average coefficient defined in the last 
section by (8.4) or (8.5). This coefficient is a second-rank tensor whose nine components 
can be calculated from the nine equations generated by taking the vector G in three 
mutually orthogonal directions as explained above. The result is symmetric and the off- 
diagonal terms are usually small, of the order of 2% of the diagonal ones. This latter 
circumstance indicates that the individual realizations are nearly isotropic, which in 
turn shows that the 32 particles used in the fundamental cell are sufficient. From each 
calculated tensor we generate three scalars by evaluating the eigenvalues. Since the 
calculation of the volume-averaged and the ensemble-average C values are different, it 
is not surprising that the mean over the configurations of the volume-averaged C differs 
slightly from the ensemble-average C. For example, for p D  = 109'0, pD = 0, we find 
C = 0.9875 for the former and C = 0.9852 for the latter. For pD = 40 %, pD = 0 the two 
values are 1.047 and 1.044, and for p D  = 40 %, pn/pc = 10 they are 1.134 and 1.133. 

Some examples of the probability density distributions of the volume-averaged C are 
shown as histograms in figure 3. Figure 3 (a) is for PD = 10 YO and p D  = 0. Figures 3 (b) 
and 3 (c) are both for p D  = 40 YO, one with pD = 0 and the other one for pD/pc = 10. 
In these figures the dashed vertical line is the ensemble-average result and the dotted 
vertical line the mean of the volume-averaged values. An obvious and perhaps 
disappointing conclusion is that the probability distribution appears rather flat and 
ranges over 2 10 YO or so from the mean. If the corresponding error bars were plotted 
in figure 1, hardly any dependence of C on density and volume fraction would be 
visible. This feature implies that attempts to measure or calculate C with great accuracy 
are to some extent futile. In any single experiment there would be a substantial margin 
of uncertainty as to what value effectively prevails. Another use of these results would 
be to bracket computationally the expected range of experimental data. 

To generate a better statistics, these results have been obtained with 200 
configurations for p D  = 10 % and 100 configurations for PD = 40 % (equivalent to 600 
and 300 respectively with the three different choices of G). The values of the ensemble- 
average C for these three cases, 0.9852, 1.044, and 1.133, compare quite well with the 
corresponding ones, 0.9848, 1.045, and 1.135, obtained with 40 configurations. We 
thus conclude that the number of configurations used to generate figure 1 is sufficient. 
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FIGURE 3. Statistical distribution of the volume-averaged values of C (cf. section 9) for (a) /3, = 0.1, 
po = 0 obtained with 600 configurations, (b) /3, = 0.4, p D  = 0 obtained with 300 configurations, and 
(c) = 0.4, pD/pc = 10 obtained with 300 configurations. The dashed vertical line is the ensemble- 
average value and the dotted vertical line the mean of the volume-averaged values. 
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10. Discussion 
Wallis (1991 a, h) has devoted considerable effort to the inertial coupling of spheres 

in inviscid, locally irrotational flow. Upon comparing equations (74) and (77) of Wallis 
(1991 b) with our equations (3.4) and (3.14) (the latter written using the small-particle 
results of 94) we find 

au, 
-Pc A ,  = EP, P, [!2+ u, . vu, -__- at UI) - vu, 

'*VD T C + p C p C  MC) =-V'(p,p,EWW)$-VIP,(p,--p,)l .  (10.2) 

Here we have dropped the angle-bracket notation to indicate averages and W = 
uc - u,. The quantities E and p D  are the exertia coefficient and disperse-phase pressure 
introduced by Wallis. Up to a divergence-free field (that is presumably zero) the second 
relation implies 

(10.3) 

where I is the identity tensor. For the difference p D - p ,  Wallis quotes the relation 

(10.4) 

concerning which he, however, notes the lack a proof 'that is valid for unsteady 
motion'. In the dilute limit, with E = ;PD and (10.4), by the dilute results (5.6) and (5.7) 
for Tc and M,, the two terms in the left-hand side of (10.3) combine in such a way as 
to give the right-hand side provided the disperse-phase Reynolds stress MD can be 
ignored. Hence our result coincides with Wallis's in this limit. As for (lO.l), again in 
the dilute limit, we find that the two sides of the equation are identical for M D  = 0. At 
finite volume fractions, for the linear case of Q 6 ,  the two models are also equal provided 
that 

E = +pJ, C. (10.5) 

In view of this relation, the results presented in the previous section constitute an 
explicit evaluation of E for this case. 

In spite of these similarities, Wallis's work is quite different from ours. The technique 
that we have developed and used in this paper is quite general and can be applied to 
a diversity of problems such as Stokes flow, heat conduction, stresses in composites, 
and others (Zhang 1993; Prosperetti & Zhang 1994). Wallis's approach, on the other 
hand, rests heavily on potential theory. Secondly, his results depend on a number of 
assumptions which, though physically insightful, lack a rigorous justification. The 
validity of (10.4) is one example. Others are his reliance on the dipole approximation, 
and his use of area and volume, as opposed to ensemble, averaging. Although all these 
averaging techniques coincide for homogeneous systems, care is needed in interpreting 
spatial averages for dense, non-homogeneous mixtures whereas ensemble averages are 
always well defined. Finally, his results presuppose that all particles move with the 
same velocity. 

Sangani & Didwania (1993~) have carried out a study similar to ours for pD = 0 
neglecting contributions from the particles' Reynolds stress. Rather than obtaining 
separate equations for the continuous and disperse phases, they obtain a mixture 
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equation and a disperse-phase equation. The present mixture equation can be obtained 
by adding the two momentum equations (4.11), (4.12) to find 

a 
Pc,(Pc uc) + Pc V-U, uc uc) + VP, 

= VG! pC MC + p D  T C + p D p D  M D )  + ( p C  p C  + p D  p D ) g -  < F e L )  +nFc' 

The left-hand side of this equation is the same as that of Sangani & Didwania. After 
carrying out a small-particle approximation similar to that of $4, Sangani & Didwania 
write the right-hand side as V(P/+p,E), where P = ,4cpc+/3DpD is the total mixture 
pressure that may be identically rewritten as P = p ,  - pD(pc -pD). One of the terms in 
E is identical to our continuous-phase Reynolds stress tensor M,. The remaining 
terms, with the neglect of viscosity, are the divergence of 

With the approximation ( p D ) l  z pD,  this integral is identical to our - T,, so that 
Sangani & Didwania's term Psi, + pD E equals our p ,  dij  - pD T ,  - p, p, M,. The 
correspondence is close since, as demonstrated by the explicit results of $ 5, both / ID  T ,  
and M, are proportional to pD for small p D .  A comparison of Sangani & Didwania's 
other momentum equation with the present results is given in Appendix C, and a more 
complete discussion can be found in Bulthuis, Prosperetti & Sangani (1994). 

In several papers, Drew, Lahey and co-workers (Drew 1989; Arnold, Drew & Lahey 
1989; Park, Drew & Lahey 1992) have presented averaged equations derived by a 
version of the so-called 'cell model'. After correction of what appear to be misprints, 
their results agree with those that we presented for the dilute case in $5. There are some 
important differences, however. The first one is that their final expressions are given in 
expanded form, failing to recognize that they are the divergence of the tensor T ,  
defined in (4.10). As a consequence, the derivation of the equations is also more 
complicated. Secondly, their result is based on a rather ad hoc implementation of 
ensemble averaging. Thirdly, our derivation explicitly shows the result to be only valid 
to O(PD) rather than for arbitrary volume fractions. Finally, they take the particles to 
move with the same velocity so that their equations do not contain a term comparable 

The trace of the divergence term in the right-hand side of the continuous-phase 
to MD. 

momentum equation (5.1 1) is 

:pC v[pD(uC-uD)21 = i ( u C - u D ) 2  O p D  + ~ p D ( u C - u D ) . v ( u , - u D ) .  

The first term in the right-hand side of this equation is present in several multiphase 
flow models (see e.g. Banerjee & Chan 1982; Pauchon & Banerjee 1986; Pauchon & 
Smereka 1992) where it is written as (pc-ps)VpD,  with p s  the surface average 
pressure. The expression p ,  -ps  = ippC(uc - uD)' (cf. (10.4)) is deduced by averaging 
the pressure over the surface of an isolated sphere in potential flow. It has been argued 
in Prosperetti & Jones (1984) that the correct form of this contribution should instead 
be v v D ( p , - p s ) ] .  While this suggestion is supported by the present results, the 
tensorial nature of this term was not identified in that study. 

A distinctive feature of our work has been the manner in which the disperse-phase 
momentum equation has been derived without explicit use of the particle constitutive 
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relation. This approach, which is made possible by using averages separately defined 
for each phase, may be preferable to the more common one in which the averaged 
quantities are required to be defined at every point in space (see e.g. Batchelor 1970, 
1972, 1974). Indeed, the continuous-phase averaged momentum equation cannot 
physically be expected to depend on the detailed internal mechanics of the particles as 
long as their outer boundary appears rigid to the suspending phase. We also find that 
the motion of the disperse phase is determined by the continuous-phase pressure, 
rather than by some ‘average’ pressure that includes a contribution from the particles 
as, e.g., in Biesheuvel & van Wijngaarden (1984), Wallis (1991 a, b), and many others. 
Again, this conforms with physical intuition. Any net effect of the particle internal 
pressure on the motion of the disperse phase can only arise through a coupling with 
the continuous-phase pressure mediated by a stress-balance condition at the 
particle-fluid interface. The approach that we have taken avoids this rather involute 
conceptual description and deals with the continuous-phase pressure directly. 

With M, = 0 the dilute-limit model derived in $ 5  is not hyperbolic and, therefore 
(Jones & Prosperetti 1985), unstable. As shown in $4, the model is invalid at the short 
spatial scales that must be considered to test hyperbolicity and the first conclusion is 
therefore of little significance per se. The instability, on the other hand, is real and 
reflects the instability of the initial-value problem for spheres in potential flow 
demonstrated by the direct numerical simulations of Sangani & Didwania (1993b) and 
by the considerations of Smereka & Milton (1991). The particle fluctuation velocity 
(which has been ignored by virtually all previous investigators) may be expected to 
counter somewhat the mutual attractive force between the particles and hence mitigate 
the instability. 

The numerical results of 99 for concentrated mixtures show that our equivalent of 
the added-mass coefficient depends very little on volume fraction and density. We have 
studied its statistics and have found that a & 10 % variability can be expected between 
individual realizations of the ensemble. This result indicates that, for practical 
purposes, little would be gained by attempting to determine the ensemble-average 
value of this quantity with greater precision and a value C = 1 can be assumed for 
practical purposes. 

These computations furnish one example of a manner in which our results are useful 
in practice. For example, on the basis of (5.6), one may try to parametrize the form of 
Tc at finite volume fractions as 

T - - 1  c - 5Pc[2GA<Uc> - <a2 1 
-:G,(<uc> - <%)) (<%> - (%>)I -kPc[2G, (Tr M,) /-tG2 MD1, (10.9) 

where the coefficients G, and G, are functions of pD and p,/pc that equal 1 for 
/?, = 0, and to obtain these quantities numerically by means of direct simulations. 
In a broader perspective, the quantities that are needed to close the model, such as T, or 
A,, are expressed in terms of well-defined computable integrals (cf. (4.10) and (3.13)) 
for which direct numerical simulation can be quite powerful. 

Two important effects - particle collision and viscosity - have been neglected in this 
study. The first one is small for the cases we have explicitly considered-dilute 
suspensions or small-amplitude motion - but will be significant in many other 
problems. Drag forces, as shown in Sangani & Didwania (1993b), are essential to 
describe flows in which the particle distribution function cannot be prescribed as here 
but evolves with time. These effects will be considered in future applications of the 
present approach. 

Finally, we note that the same technique demonstrated here can be applied to the 
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case in which the particles have more degrees of freedom simply by including them as 
additional arguments of the probability density function P(N; t). In a separate paper 
(Zhang & Prosperetti 1994) we study the case of particles with a variable radius. The 
extension to complex shapes characterized by orientation etc. is immediate. By the 
same technique we have also obtained dilute-limit results for Stokes flow, heat 
conduction and convection, and thermocapillary flow (Zhang 1993 ; Prosperetti & 
Zhang 1993). 

The authors express their gratitude to Professors A. Sangani, G. Wallis, R. Caflisch, 
and G. Papanicolaou, for several comments and many interesting conversations on the 
present problem and techniques. This study has been supported by DOE grant 
DE-FG02-89ER14043 and NSF grant CBT-89 18 144. 

Appendix A 
We derive here an equation corresponding to (2.31) for the partial time derivative of 

the conditional average ( f C ) K .  There is a subtle point here that may be explained as 
follows. At time t, (f,), is calculated by averaging f, over the subset of all realizations 
such that K particles are in some prescribed configuration %? K .  At time t + dt, for each 
one of these realizations, the configuration of those K particles will have changed in a 
different way since it is affected also by the motion of the N -  K particles that are not 
tracked in detail. Thus, if one were to think of a ( f c ) K / a t  as the limit of the ratio of 
the increments, there is no straightforward rule on which configurations to include in 
calculating (f,), at time t + dt. In the presence of this ambiguity, which definition to 
adopt for this derivative depends on the ultimate use of this quantity. If, for example, 
one needs to average the liquid momentum equation subject to one particle being in a 
certain position at time t, where the particle in question is at t + dt is irrelevant and the 
proper average must include all the possibilities. Because of these considerations we 
define the partial time derivative of (f,), at x fixed by 

K 

+ c [w". V , ( X C f C  P(N-KI K ;  0) + W". A,(Xcfc W - K I  K ;  t))l}. (A 1) 
a=l 

The derivation of an explicit result requires an evolution equation for the conditional 
probability. From the definition P(N- KI K ;  t) = P(N; t)/P(K; t) this can be obtained 
from the probability equation for P(N; t) and the corresponding equation for P(K; t). 
The latter is readily obtained by averaging the probability equation (2.2) over the 
configurations of the late N -  K particles. The result is 

where, for cx = 1,2, ... , K, 

The new average introduced here is somewhat reminiscent of that defined in (2.37) but 
bears no simple relation to it and is best indicated by a different symbol. 
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With this result, some straightforward manipulations lead to 

The corresponding definition of the spatial derivative is unambiguous and the 

v ' ( b $ ( f C U C ) K )  = P ~ ( v ' C f , u , ' ) ) K + ( ~ _ ~ ) !  S d Y ; ' " - " f , : u C - V x , ~ ( ~ - ~ , ~ ;  t). 

calculation simpler. The result is 

(A 5 )  

Again using the kinematic boundary condition (2.30), the analogue of the result 
(2.31) for the conditional average is found to be 

K 

With this result we may now write the average of the continuous-phase continuity 
and momentum equations conditional to one particle being fixed at y with centre-of- 
mass velocity w. By choosingf, = 1 we find 

(A 7) 

to be compared with the unconditional form (3 .3) .  Similarly, by takingf, = u,, we find 

apt. Ph 
- + v - CBt. ( U C )  1) = - (4 * [(W - ((*))I) w ;  01 >1, 
at  P(1; t)  

+- p', ("C 4. K ~ -  ((l+)),) w ;  t ) l > l ,  (A 8) 
P(1; t )  

analogous to (3.4). The quantity 8- ((8)), is smaller than O(1) for p D  + 0. Similarly, 
to the same accuracy, /?: = 1, ( U ~ U , ) ,  = ( u ~ ) ~ ,  (Vpc)l = V (p , ) , ,  while 
a,@,/& = -aph/at is negligible. Using these approximations, (5.1) and (5.2) are 
obtained. 

Appendix B. Detailed derivation of the results of 55 
In view of the boundary conditions at infinity (5.3), it is advantageous to consider 

simultaneously with (5 .  l), (5.2) the unconditionally averaged equations, also to 0(1), 
namely 

v -  (u,) = 0, (B 1) 

P , [ y + ( u c ) . v ( u c )  1 +V(p,) = 0. 
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Furthermore, it is convenient to change the frame of reference to one in which particle 
1 is at rest. Indicating by a prime quantities evaluated in this non-inertial frame, we 
write 

(u;7)1 = vq5;, (u;)  = VqS. (B 3) 

The Bernoulli integral of (5.2) is then 

from which 

It should be noted that, since we are only interested in the difference between the two 
pressures, all the calculations can be carried out in the non-inertial frame with no need 
to correct for the acceleration of the frame which affects ( p c )  and ( P ~ ) ~  equally. 

We start by expanding q5’ around the centre y of the particle to find, at the generic 
field point x ,  

“ 1  
(B 6) q5’(x) = c - (x - y p  W 1 )  4’0.1). 

1-0 1!  

Here and in the following we use an abbreviated notation such that 

$)’cv> = ( x  -Y>,, ( x  -Yh2 . * .  (x -Yh, ail 4, . . . aii, q5’0.1). ( x  - y ) ( u  V‘O (B 7) 

The sphere centred at y is now introduced in the flow described by 4’. It will be recalled 
that the frame of reference has been selected so that this sphere is at rest. To calculate 
the new potential q5I it is useful to note that the quantity 

4’0.1) (B 8) 
- 1 (x - y ) ( z )  V(Z) 
l!rz 

is independent of r = Ix-yl and only depends on the angular coordinates measured 
from the centre of the sphere. With this remark, and by either using Weiss’s theorem 
or proceeding directly, it is easy to find 

From this expression the component ( u ; ~ ) ~  of the velocity (u;), in the i-direction is 
readily found as 

(&i)l = (&i) 

where 

is the ith component of the unconditionally averaged velocity (u;) .  
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B. 1. Calculation of A ,  and 7, 

We use (B 4) to express the integrand in the approximation (4.7) for A ,  and (B 6) and 
(B 9) to calculate the time derivative of the difference of the potentials. To lowest order 

=-fv -+w.V(uc)-W , (y 1 
where the last step follows upon expressing the result in terms of quantities referred to 
the original frame. 

To calculate the contribution of the nonlinear term in (B 6), we start by evaluating 
it on the surface of the particle centred at y to find 

<.;>,*<u;>,- (u;l>. (4”) 

1 2 ldSn((u’,) (u’,) - (u’,), (u;),) = &(w - (u,)) - V (uc).  (B 14) 

Combining (B 12) and (B 14) we then have 

/dSn((Pc)i(Pc)) = -~~,v~~+(Uc).v(u,)-H.j. (B 15) 

The last step is to perform the integration over the particle velocity w. Since (u,) 
is independent of this quantity, by (2.15), (4.1), and (2.38), we have 

The last term IT has been calculated in (3.15) so that 

With the substitution of (u,) for w, which is legitimate to the present order of 
accuracy, we recover the form (5.5) given in the text. 

The calculation of T, is very similar. The integrand only differs from that of A ,  by 
the presence of an extra factor n, which singles out different terms of the expansions 
(B 6), (B 9), and (B 13). The calculation is otherwise identical to the one just described 
and gives the result quoted in (5.6) in the text. 

B.2. The Reynolds stresses 
For the continuous phase we have, to the present order, 

M, = - ( (UC - (uc>> (uc - (u,>)> 
= - <((Uc>,-  <uc>) (<Uc)1- (%>)>, + OW,). 
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Thus 

M, = - d 3 W  d3Y pot, w ;  t )  ((uc)1- (u,)) ( ( % ) I  - (uc)) .  (B 19) s s  
We use the earlier result (B 10) for (uc) , - (uc)  = (uL),-(u;)  which, to leading 
order, is 

where r = x - y .  Upon substitution into (B 19) and change of the integration variable 
from y to r we have an expression with the structure 

/ =  s r>a( :yF(x , r )d3r .  (B 21) 

By adding and subtracting F(x,O) in the integrand we have 

F(x, 0) d3r + a3 s-'[F(x, as) - F(x, O ) ]  d3s, (B 22) 
= (3 s,,, 

where s = r/a.  It is clear that, as a + 0, the second term tends to zero faster than a3 and 
therefore can be neglected to the present accuracy. With this simplification the integral 
in (B 19) is straightforward and gives the result (5.7) quoted in the text. 

For the disperse-phase Reynolds stress see the comments at the end of 95.  

B.3. Rotating frame 
Here the correction to A ,  given in (5.9) is derived. 

Let us consider, in a frame rotating with an arbitrary angular velocity sZ(t), a flow 
that is potential in the inertial laboratory frame. In the rotating frame the continuous- 
phase velocity field has a uniform vorticity V x (u,) = 2 0  and, since the expression 
(5.5) has been obtained under the assumption of irrotational flow, it will not represent 
the correct value of A ,  in the rotating frame. To amend this relation for rotation we 
write 

where A ,  is the form given by (5.5) and Xmust be determined. To this end we require 
that, with this correction, A;, transform in an objective way upon a further change of 
the coordinate system to another rotating frame, i.e. 

A;, = A,+p,X,  (B 23) 

Ah* = Q(t)A;,, (B 24) 

where Q is a suitable orthogonal matrix (see e.g. Drew et al. 1979) and the asterisk 
denotes values in the second rotating frame. Upon imposing this condition on (B 23), 
using the standard rules for the transformation of the velocity field, one finds 

or 

X Y C - Q ( W - ( U , ) )  = QX, 

x = - a T Q .  (w- (*,)) + Q ~ x * ,  

where the superscript Tindicates the transpose. This relation is general and must hold 
for any rotating frame, i.e. any Q. Let us consider then the particular Q necessary to 
return to the laboratory frame countering the rotation 0 of the rotating frame. In this 
frame [V* (uz)-(V* (uz))']  must vanish and, since (Drew et al. 1979) 

V* (u:) = QQ'+ Q(V (uc ) )  QT, (B 27) 
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we find 
0 = v *  ( u g ) - ( v *  ( U g y  

= Q0’- adT+ Q[V (u , )  -(V ( u ~ ) ) ~ ]  Q T ,  (B 28) 

from which, using the orthogonality of 0, 

QTa-aTd = V ( ~ , ) - ( V ( U ~ ) ) ~ .  

Upon differentiation of the relation Q T Q  = /, with / the identity tensor, it is however 
seen that Q’ and Q anticommute so that the previous relation can also be written as 

2QTQ = -[V ( u ~ ) - ( V ( U ~ ) ) ~ ] .  (B 30) 

Since in the new frame ( u c )  is irrotational, (5 .5 )  is applicable so that X* vanishes. 
Upon substitution of (B 30) into (B 26) one then finds 

x = -x- (42)) x (V x ( U C ) ) ,  (B 31) 

which is the result (5.9) quoted in the text. 

Appendix C 
By H .  F. Bulthuis 

Department of Mechanical Engineering, The Johns Hopkins University, 
Baltimore, M D  21218, USA 

We derive here in a compact way a corrected form of the expression of Sangani & 
Didwania (1993a) for the dispersed-phase impulse equation and the ‘particle’ or 
disperse-phase stress tensor. This result may be obtained in many ways. An ab initio 
derivation is given in Bulthuis et al. (1994). Here we obtain it by starting from the 
averaged momentum equations of $4. The recovery of the result of Bulthuis et al. (1994) 
and Sangani & Didwania (1993a) in this way lends further support to the correctness 
of the equations found in this paper. 

For simplicity, following Sangani & Didwania (1993a), we restrict our discussion to 
the case of massless particles and also ignore gravitational and collisional forces. Then 
the disperse- and continuous-phase momentum equations (4.1 l), (4.12) may be written 

Pc a P c ( u ~ ) + P c  at V * V ~  (uc + ~ c  v (pc> = -PD A D  - tv*~a,  T<;L (C 1) 

PDv ( ~ c )  = PDAD. 
Adding and applying the transport theorem of (2.31) we write 

= -V(P ,>+V.cB,  Tc).  (C 3) 

Let now 
the relation (2.23) to find 

be the exact microscopic velocity potential such that uC = V$c and apply 
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We can convert the surface integral over the particles that touch the point x to an 
integral over the surface of the particle centred at x by using a Taylor expansion similar 
to that of (4.8). In this way we have 

We now note that, if J denotes the Kelvin impulse of the generic particle centred 
at x, ,. 

J E - p  C J  dsYnrpc, 
Ix-yl=a 

we have, in view of (2.38), 
n j = - p c S d 3 w ~ ( x , w 7 t )  - j (at: ) 

dSyn -+w.uc ( y , t l x , w )  
Jx-yl=a 1 

so that we may also write 

d S y s n ~ ( ~ / + u c u c  

Upon using this relation to express the left-hand side of (C 3) and rearranging we then 
may write - 

(C 9) n J =  -V-aP ,  

where ap is the potential contribution to the particle stress given by 

d S y s n ~ ( ~ / + u c u c  ( y , t l x , w ) .  (C 10) s +pc d3w P(x,  w, t )  s Ix-yJ=a 

Equation (C 9) may be recast in a different form by using (2.40) to express the left-hand 
side, to find 

(C 11) 
anJ 
-+V.(nWJ) = -V.(a”+ap), 
at 

ak = n ( Z -  wJ). 
where ak is the kinetic part of the disperse-phase stress tensor 

(C 12) 

Equations (C 11) and (C 12) were first given by Biesheuvel & Gorissen (1990) who, 
however, did not derive an explicit representation for ap. 
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noting that, from the Bernoulli integral, we have 
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The potential part u p  of the stress tensor may be rewritten in a different form by 

Hence, with the definition (4.10) of T,, 

P D  T C - P D  ( P c > /  = --,,Sd3W P(x,  w, t )  1 d ~ , 4 P c ) , C y J l x , w )  
(x-yl=a 

= pc b 3 w  P(x,  w, t )  1 dS,sn. (%/+$a/) 0, t 1 x, w). 
x-yl=a 1 

(C 14) 

With this relation, (C 10) for the potential part of the particle stress finally becomes 

sn+,uc-+2,/)10, tlx, w), 
lx-yl-a 

(C 15) 
s oP = M-~Tr[MI/+p, d3w P(x ,  w ;  t )  s 

where M = pcPc {uc uc) is the average momentum flux of the continuous phase. 
After correction of some errors, this expression can be brought to coincide that of 
Sangani & Didwania (1993 a). An alternative derivation and a complete discussion of 
this matter is presented in Bulthuis et al. (1994). 
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